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Quantifying the role of gene flow during the divergence of closely related species is crucial to understanding the process of

speciation. We collected DNA sequence data from 20 loci (one mitochondrial, 13 autosomal, and six sex-linked) for population

samples of Lazuli Buntings (Passerina amoena) and Indigo Buntings (Passerina cyanea) (Aves: Cardinalidae) to test explicitly

between a strict allopatric speciation model and a model in which divergence occurred despite postdivergence gene flow. Likelihood

ratio tests of coalescent-based population genetic parameter estimates indicated a strong signal of postdivergence gene flow and a

strict allopatric speciation model was rejected. Analyses of partitioned datasets (mitochondrial, autosomal, and sex-linked) suggest

the overall gene flow patterns are driven primarily by autosomal gene flow, as there is no evidence of mitochondrial gene flow and

we were unable to reject an allopatric speciation model for the sex-linked data. This pattern is consistent with either a parapatric

divergence model or repeated periods of allopatry with gene flow occurring via secondary contact. These results are consistent

with the low fitness of female avian hybrids under Haldane’s rule and demonstrate that sex-linked loci likely are important in the

initial generation of reproductive isolation, not just its maintenance.
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The increased ease of gathering DNA sequence data from multiple
unlinked loci combined with the development of coalescent-based
analytical methods to analyze such multilocus datasets allows re-
searchers to investigate and quantify the role of gene flow and in-
trogression in divergence and speciation. Although the allopatric
speciation model, in which species originate in isolation without
the exchange of genes, continues to be considered the predomi-
nate mode of speciation in most taxa (Coyne and Orr 2004), the
application of “divergence population genetics (DPG)” methods
has provided empirical evidence that isolation with gene flow

may play a larger role in the speciation process than previously
thought (Hey 2006; Nosil 2008). Although many DPG studies
have uncovered divergence patterns consistent with postdiver-
gence gene flow (e.g., Won and Hey 2005; Lee and Edwards
2008; Niemiller et al. 2008; Strasburg and Rieseberg 2008; Kane
et al. 2009), most have not formally tested alternative models of
strict allopatry and isolation with gene flow (but see Geraldes
et al. 2008; Nadachowska and Babik 2009; Ross-Ibarro et al.
2009). Because the majority of DPG studies have not explicitly
rejected an allopatric speciation model, it is difficult to assess
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accurately whether speciation in the face of gene flow is a com-
mon phenomenon.

It is also possible to use DPG to investigate the role that
sex-chromosomes play in the formation of new species over the
course of divergence between two closely related taxa. Empirical
studies of hybrid zones have demonstrated reduced introgression
of sex-linked loci relative to autosomal loci (Hagen and Scriber
1989; Tucker et al. 1992; Saetre et al. 2003; Borge et al. 2005;
Carling and Brumfield 2008a), but cline-based studies have two
limitations. First, the differences in the effective population size of
autosomal and sex-linked loci may contribute to observed differ-
ences in cline widths. Current methods of cline-based analyses do
not consider differences in effective population size among loci.
In contrast, differences in effective population size are readily
accounted for in coalescent-based DPG analyses. Second, when
applied to investigations of gene flow between divergent taxa,
cline-based analyses are typically used to describe patterns of
gene flow that result upon secondary contact between partially
reproductively isolated taxa. Whether such introgression patterns
are indicative of gene flow patterns occurring during divergence
remains unknown.

Here, we apply the recently described ‘“isolation-with-
migration analytic” model (Hey and Nielsen 2007) to test two
hypotheses related to the divergence process between two species
of buntings in the genus Passerina (Aves: Cardinalidae). The first
hypothesis is a strict isolation model whereby speciation resulted
from divergence in allopatry without any subsequent gene flow
(Fig. 1A). The second hypothesis is an isolation-with-migration
model, in which speciation resulted despite the presence of gene
flow between the two diverging lineages (Fig. 1B). It is impor-
tant to note that we are investigating the role of postdivergence
gene flow that occurred prior to current hybridization that has re-
sulted from secondary contact, which likely arose within the last
6500 years (see below). We also use DPG to investigate the rel-
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Figure 1. Schematic of strict allopatric speciation model (A) ver-
sus isolation-with-migration speciation model (B). The dashed line
represents the approximate timing of secondary contact that has
resulted in current hybridization. Based on available evidence, this
secondary contact likely began no more than ~6500 years ago
(Abrams 1992).

ative contributions of mitochondrial, autosomal, and sex-linked
gene flow to the overall patterns of gene flow during divergence.
If sex-linked loci play a disproportionately large role in reproduc-
tive isolation and speciation (Charlesworth et al. 1987; Coyne and
Orr 1989), this should be evident in reduced gene flow estimates
for these sex-linked loci relative to autosomal loci.

STUDY SYSTEM

Passerina amoena (Lazuli Bunting) and P. cyanea (Indigo
Bunting) are sister species (Carling and Brumfield 2008b) that
hybridize where their breeding ranges overlap, as a result of sec-
ondary contact, in the western Great Plains and eastern foothills of
the Rocky Mountains of North America (Sibley and Short 1959;
Emlen et al. 1975; Kroodsma 1975; Baker and Boylan 1999).
Exactly when P. amoena and P. cyanea came into secondary con-
tact is unclear, but breeding records indicate it has been at least
120 years (Sibley and Short 1959). An estimate of the upper limit
can be derived from paleoecological data that suggest a warming
trend between 6500 and 3500 years ago resulted in the expansion
of oak (Quercus) savannas in the mid-west and central prairie re-
gions of North America (Abrams 1992). Such oak savannas, along
with associated undergrowth species, likely provided a suitable
breeding habitat for Passerina buntings (Payne 1992; Greene et al.
1996). Taken together, current hybridization between P. amoena
and P. cyanea likely began at least 120 years ago, but probably
not more than 6500 years ago.

Previous studies of the Passerina hybrid zone have indicated
that sex-linked loci likely play an important role in the contin-
ued maintenance of reproductive isolation between these species
(Carling and Brumfield 2008a, 2009). Using population samples
collected along a geographic transect spanning the contact zone,
cline-based analyses of multiple loci showed that mean autoso-
mal clines were significantly wider than mean sex-linked and
mitochondrial clines (Carling and Brumfield 2008a). What is less
clear is whether divergence prior to secondary contact (i.e., prior
to 6500 years before present) between P. amoena and P. cyanea
occurred in complete geographic isolation or whether it occurred
in the face of ongoing gene flow at that time (Fig. 1). In addition,
the importance of reduced gene flow of sex-linked loci during
speciation is unknown, as is a robust estimate of the divergence
time between these species. The goal of this study is to address
these questions using DNA sequence data from 20 loci.

Methods

SAMPLING AND MOLECULAR METHODS

Samples were obtained from four populations, two P. amoena pop-
ulations west of the contact zone (Washington and Wyoming) and
two P. cyanea populations east of the contact zone (Illinois and
Louisiana; Fig. 2). These populations were chosen specifically
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Figure 2. Breeding distributions and sampling localities for pop-
ulations of Passerina amoena and P. cyanea. Digital maps (Ridgely
et al. 2003) were downloaded from NatureServe (2006) and
modified.

because they lie well outside the previously defined contact zone
(Fig. 2); therefore divergence time and gene flow estimates are un-
likely to be strongly influenced by ongoing hybridization between
these species. Sample sizes for the Washington and Louisiana
populations were 12 and 13 individuals, respectively. As only
10 individuals were available from Illinois, two individuals from
Minnesota were added to the Illinois sample to bring the total to
12. Similarly, two individuals from Montana were added to the 10
individuals from Wyoming, bringing the total to 12 individuals.
All of these individuals are vouchered (Table S1) and have been
included in previous research on patterns of differential introgres-
sion across the Passerina hybrid zone (Carling and Brumfield
2008a, 2009).

We extracted genomic DNA from ~25 mg of pectoral muscle
from all individuals using a DNeasy Tissue Kit (Qiagen, Valencia,
CA) and amplified each individual at 20 loci (one mitochondrial,
13 nuclear autosomal and six sex-linked; Table 1) using stan-
dard PCR conditions (Table S2). In contrast to mammals, birds
have ZW sex-determination in which females are the heteroga-
metic sex. All of the sex-linked loci are located on the Z chromo-
some (Carling and Brumfield 2009), which is analogous to the X
chromosome in mammals. Some of these loci were examined in
previous studies (Table S2), but all were chosen based on ease of
amplification. This strategy was chosen so as to not systematically
bias parameter estimates that may result from only including loci
that show strong differentiation between P. amoena and P. cyanea.
PCR amplicons were purified using either 20% polyethylene gly-
col (PEG) or Exo-Sap and then cycle-sequenced in both directions
using the Big Dye Terminator Cycle-Sequencing Kit version 3.1
(Applied Biosystems Inc., Foster City, CA). We edited and as-
sembled all sequences using Sequencher version 4.7 (GeneCodes
Corp., Ann Arbor, MI). For those sequences that contained more
than one heterozygous site, we resolved haplotypes probabilisti-
cally using PHASE (Stephens et al. 2001; Stephens and Donnelly
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2003), which can accurately infer haplotypes even when the num-
ber of individuals sampled is less than in this study (Harrigan et al.
2008). Only those individuals for which PHASE was able to as-
sign haplotypes with a probability greater than 0.70 were used in
subsequent analyses. We conservatively used a probability of 0.70
as our cutoff because it has been shown that haplotypes inferred
by PHASE with a probability greater than 0.60 accurately reflect
haplotypes determined through cloning (Harrigan et al. 2008).
All sequences newly generated for this study have been deposited
in GenBank (accession numbers GU197010 through GU197377,
GU215039 through GU215074 and Table S3).

DATA ANALYSES

We tested for intralocus recombination using the four-gamete test
as implemented in DnaSP version 4.10 (Rozas et al. 2003). When
recombination was detected, we kept the longest independently
segregating block of sequence for subsequent analyses. We also
used DnaSP to calculate haplotype diversity (Hq) (Nei 1987), nu-
cleotide diversity (m) (Nei and Li 1979), and Tajima’s D, to test for
selection (Tajima 1983) for each locus in each species (Table 1).
We tested for disequilibrium between all pairs of loci and ran an
analysis of molecular variance (AMOVA) on the mitochondrial
data using Arlequin version 3.11 (Excoffier et al. 2005).

Divergence time (7), levels of gene flow (m; and m,), and
effective population sizes (g1, g2, and g4) were estimated using
the coalescent-based “isolation-with-migration analytic” model
implemented in the program IMa (Hey and Nielsen 2007). Two
general classes of IMa runs were conducted. The first included all
sampled individuals and investigated the relative contributions of
each marker class (mitochondrial, autosomal and sex-linked) to
the overall speciation history of P. amoena and P. cyanea. Four
separate IMa analyses were run to address this first question, us-
ing all individuals but different subsets of loci: (1) the complete
dataset, which contained all loci, (2) the mitochondrial dataset,
which contained only the two mitochondrial loci, (3) the auto-
somal dataset, which contained only the 13 autosomal loci, and
(4) the z-linked dataset, which contained only the six z-linked
loci. The second class of IMa runs was designed to explore the
geographic structure of gene flow between these species by com-
paring divergence time and gene flow estimates between the two
most distant populations (WA and LA) with the estimates between
the two closer populations (WY and IL). Separate analyses were
run for two datasets using all loci but only subsets of individuals:
(1) WA/LA, which consisted of individuals from WA and LA, and
(2) WY/IL, which included individuals from WY and IL.

In all IMa runs, only the longest independently segregating
block of sequence (Table 1), as identified using the four-gamete
test, was used for each locus. In addition, only assigned haplo-
types with a posterior probability greater than 0.70 were used.
Initial runs with wide priors (g, ¢2, ga = 20, m;, m, = 10,
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Table 1. Loci sampled and population genetic parameter estimates within Passerina amoena and P. cyanea.

Locus Species Length (bp)! N? Hy T (variance) Tajima’s D
mtDNA
ND3+Cont. Reg. P. amoena 524 24 0.958 0.053 (0.022) —1.947
P. cyanea 23 0.972 0.006 (0.002) —1.401
Autosomal
16214 P. amoena 252 40 0.583 0.003 (0.001) —1.371
P. cyanea 32 0.482 0.003 (0.001) —1.471
17483 P. amoena 112 40 0.748 0.014 (0.005) 0.925
P. cyanea 32 0.804 0.015 (0.005) —0.189
18503 P. amoena 344 36 0.838 0.005 (0.002) —0.275
P. cyanea 30 0.710 0.003 (0.001) —1.869
23361 P. amoena 123 40 0.644 0.008 (0.003) —0.835
P. cyanea 30 0.715 0.008 (0.003) —1.043
24792 P. amoena 264 38 0.671 0.003 (0.001) —0.611
P. cyanea 32 0.391 0.002 (0.001) —1.638
AETC P. amoena 111 42 0.340 0.003 (0.001) —1.027
P. cyanea 32 0.286 0.003 (0.001) —1.379
BACT3 P. amoena 128 36 0.560 0.005 (0.002) —1.428
P. cyanea 30 0.634 0.007 (0.003) —1.960
GADPH P. amoena 101 48 0.709 0.009 (0.003) —0.690
P. cyanea 48 0.537 0.006 (0.002) —1.388
MCIR P. amoena 202 48 0.197 0.001 (0.0003) —1.459
P. cyanea 42 0.391 0.002 (0.001) —0.884
MYO?2 P. amoena 113 40 0.468 0.005 (0.002) —0.393
P. cyanea 40 0.594 0.007 (0.002) —0.373
RHOI P. amoena 114 48 0.196 0.002 (0.001) —-0.714
P. cyanea 48 0.159 0.001 (0.0003) —1.157
TGFB2 P. amoena 217 32 0.769 0.005 (0.002) —1.271
P. cyanea 48 0.532 0.004 (0.001) —2.224
TROPO P. amoena 286 18 0.446 0.002 (0.001) —1.240
P. cyanea 34 0.405 0.002 (0.001) —1.853
Sex-linked
24105 P. amoena 186 36 0.000 0.000 -
P. cyanea 40 0.740 0.005 (0.002) —2.082
ALDOB3 P. amoena 111 42 0.436 0.004 (0.001) —0.686
P. cyanea 39 0.588 0.006 (0.002) —1.622
BRM15 P. amoena 300 40 0.235 0.001 (0.0003) —1.518
P. cyanea 32 0.698 0.004 (0.001) —1.482
IQGAP2 P. amoena 70 40 0.806 0.018 (0.006) 0.731
P. cyanea 40 0.312 0.005 (0.002) —0.575
PPWDI1 P. amoena 85 41 0.000 0.000 -
P. cyanea 36 0.215 0.005 (0.002) —0.141
VLDLR9 P. amoena 240 42 0.184 0.001 (0.0003) —2.001
P. cyanea 42 0.699 0.004 (0.001) —1.284

Length of longest independently segregating block of sequence.
2Number of individuals (mtDNA) or chromosomes (all other loci) sampled.

t = 10) were used to identify priors that encompassed the en- chains with a geometric heating scheme (g1 = 0.95, g2 = 0.80),

tire distribution of each parameter estimate for use in subsequent a burn-in of 150,000 steps, and a run length of at least 5 x 10°
runs. Once appropriate priors were identified, we ran three repli- steps. To ensure proper chain mixing and parameter convergence,
cate runs for each analysis that differed only in starting random all parameter trend lines were visually inspected and the three

number seed. In all runs, we used at least 25 Markov-coupled independent runs of each analysis, which differed only in starting
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random seed, were compared. Replicate, independent runs of the
mitochondrial dataset indicated no gene flow between P. amoena
and P. cyanea (they are reciprocally monophyletic), so both mi-
gration parameters were removed for the final runs. Removing
unnecessary parameters allows for slightly more robust estimates
of included parameters (J. Hey, pers. comm.), but did not change
any results in this study.

As indicated, we ran all IMa analyses (except the mitochon-
drial data) under the full model, which estimates six demographic
parameters. Once runs had converged, we tested for the fit of
the data to simpler demographic models using the nested model
approach in the “Load-Trees” mode of IMa. This test calculates
log-likelihood ratio statistics for all possible nested models, the
significance of which can be assessed using a chi-square test
(Hey and Nielsen 2007). Calculating the log-likelihood statistics
of nested models allows for a statistical test of whether the data
are consistent with a strict allopatric speciation model. Specif-
ically, we tested the full model against a model in which both
gene flow parameters (m;, m,) were set to zero. Because we
could not reject the allopatric speciation model for the z-linked
dataset, we also analyzed those data without including the gene
flow parameters. Additionally, we created three replicate datasets
that each contained a randomly chosen subset of six autosomal
loci. These replicate datasets allowed us to investigate whether
any differences in model rejection between the z-linked and auto-
somal datasets were due to differences in statistical power given
the differences in number of loci in the full datasets (13 autoso-
mal vs. six z-linked). IMa analyses of the replicate datasets were
conducted using the same strategy as outlined above.

All parameter estimates are scaled to the neutral mutation
rate (), which is approximately 10 times faster for mitochon-
drial loci than for nuclear loci (Graur and Li 2000). To convert
the divergence time estimate () to years, we used a generation
time of one year (Greene et al. 1996; Payne 2006) and a neutral
mutation rate of 1.35 x 10~ substitutions/site/year for the autoso-
mal loci (Ellegren 2007) and 1.45 x 10~ substitutions/site/year
for the z-linked loci (Axelsson et al. 2004; Ellegren 2007) and
1.35 x 107% substitutions/site/year for the mitochondrial locus
(autosomal rate x 10). Using these per-site mutation rates, we
calculated a mean per-locus mutation rate (5.85 x 1077 sub-
stitutions/locus/year) which is required when using IMa to esti-
mate divergence time in years. We also calculated a mitochon-
drial divergence time using an avian-calibrated divergence rate of
2.1% (£0.1%) per million years for the cytochrome b gene (Weir
and Schluter 2008) and previously published data on the mean-
corrected cytochrome b pairwise divergence between P. amoena
and P. cyanea (Klicka et al. 2001). We did not calculate a mito-
chondrial divergence time estimate using IMa because the mito-
chondrial haplotypes of the individuals of the two species included
in this study are reciprocally monophyletic.
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Results

The mean length of the longest independently segregating block
of sequence data for all sampled nuclear loci was 177 bp. The
mean length was 194 bp for all loci, including the mitochondrial
sequences. As a result of the presence of multiple indels and the
inability of PHASE to assign some haplotypes with a probability
greater than 0.70, DNA sequence data were not analyzed for all
individuals at all loci (Table 1). Across loci, levels of variation
were highly variable, with both haplotype diversity and nucleotide
diversity differing by more than one order of magnitude (Table 1).

No loci showed evidence of selection after a Bonferroni cor-
rection for multiple tests was applied (Table 1). Tests of pairwise
disequilibrium indicated that all loci were effectively unlinked
and could be treated as independent loci in the IMa analyses
(P > 0.05 in all cases). Of the total molecular variance in the
mitochondrial data, most (85.02%) was between P. cyanea and
P. amoena, and nearly all of the rest (14.84%) was within popu-
lations of each species. Very little (0.13%) of the mitochondrial
variation resulted from differences between populations within
each species.

The strict allopatric speciation model was rejected for the
complete (all loci, all individuals), all loci WA and LA, all loci
WY and IL, and autosomal datasets (2LLR > 106 in all tests, df =
2, P < 0.001 for all tests; Table 2). Analyzing only a randomly
chosen subset of six autosomal loci did not change the results; the
strict allopatric speciation model was rejected for all three repli-
cate datasets (Table 2). In contrast, the strict allopatric speciation
model could not be rejected for the z-linked dataset (2LLR =
4.35,df =2, P > 0.10; Table 2). Tests of nested models were not
performed for the dataset containing only mitochondrial data be-
cause migration parameters were not included in those IMa runs.

In all IMa analyses, the estimated effective population size
of P. cyanea was larger than for P. amoena (Table 2). Divergence
time estimates (with the exception of the estimate from the mi-
tochondrial dataset) were similar across all analyses (range =
0.28-0.64; Fig. 3; Table 3). The divergence time estimated from
the mitochondrial dataset was 2.67 (Fig. 3; Table 3). Introgression
from P. cyanea into P. amoena was higher than from P. amoena
into P. cyanea (Fig. 3; Table 3). When just the autosomal data
were analyzed, the difference in introgression was nearly one or-
der of magnitude (m; = 0.37, m, = 2.12; Fig. 3; Table 3). All
parameters estimated from the WA/LA and WY/IL datasets were
similar (Fig. 3; Table 3).

The effective population size (N, = 6/4, where the mean
n o= 585 x 1077 substitutions/locus/year), calculated from
the dataset with all loci and all individuals, for P. cyanea
was ~1,180,000 individuals, and was ~400,000 individuals for
P. amoena. Using the same dataset, P. amoena and P. cyanea
diverged ~1,040,000 years ago (90% highest posterior density:



SPECIATIONAL HISTORY IN PASSERINA BUNTINGS

Table 2. Tests of nested models for divergence between Passerina amoena and P. cyanea. All models are tested against the full six
parameter (04, 02, 64, mq1, m;, t) model.

Analysis Model (®) log (P'(©® | X)) df! 2LLR P?
All loci, all individuals 01, 02, 04, m;=0, m,=0 —215.43 2 439.89 <0.001
All loci, WY and IL 01, 02, 64, m;=0, my=0 —72.83 2 156.82 <0.001
All loci, WA and LA 01, 02, 04, m;=0, my=0 —47.18 2 106.78 <0.001
Autosomal loci, all individuals 01, 02, 04, m;=0, mr,=0 —262.71 2 527.95 <0.001
Six autosomal loci, all individuals—rep 13 01, 02, 04, m;=0, mr,=0 —75.03 2 155.62 <0.001
Six autosomal loci, all individuals—rep 2 01, 02, 04, m;=0, mr,=0 —54.56 2 115.52 <0.001
Six autosomal loci, all individuals—rep 33 01, 02, 04, m;=0, mp,=0 —166.30 2 333.40 <0.001
Z-linked loci, all individuals 01, 02, 64, m;=0, my=0 1.63 2 4.35 >0.10

1Because all nested models include parameters fixed at a boundary (m;=0, m;=0), the chi-square distributions are mixtures of the multiple chi-square
distributions (Hey and Nielsen 2007). Accounting for this mixture does not change any significance values.

2All P-values<0.001 are significant after a Bonferroni correction («=0.05/8 tests=0.00625 corrected «).

3These datasets consisted of 6 (from a total of 13 loci) randomly chosen autosomal loci.
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Figure 3. Population genetic parameter estimate distributions. All parameter estimates are scaled to the neutral mutation rate (). (A)
Introgression from P. amoena into P. cyanea. (B) Introgression from P. cyanea into P. amoena. (C) Divergence time estimates from all
analyses except the mitochondrial dataset. (D) Divergence time estimate from the mitochondrial dataset. Note the different axes scales.
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Table 3. Maximum likelihood estimates and 90% highest posterior density (in parentheses) intervals of demographic parameter esti-

mates for divergence between Passerina amoena and P. cyanea.

Analysis 0;=4N ! 0,=4N,p! 04=4N 11 t=tjL my=m,/p> my=mo/u?
All loci, all individuals 2.76 0.93 0.01 0.61 0.31 0.74
(2.10-3.61) (0.69-1.21) (0.01-0.53) (0.41-0.80) (0.14-0.64) (0.34-1.28)
All loci, WY and IL 1.76 0.98 0.01 0.64 0.25 0.72
(1.20-2.62) (0.68-1.36) (0.01-0.62) (0.41-0.88) (0.05-0.62) (0.30-1.39)
All loci, WA and LA 2.13 0.75 0.06 0.59 0.21 0.52
(1.43-3.21) (0.51-1.05) (0.01-0.54) (0.38-0.82) (0.04-0.47) (0.16-1.12)
Autosomal loci, all individuals 3.22 0.80 0.21 0.28 0.37 2.12
(2.10-4.89) (0.52-1.19) (0.07-0.48) (0.21-0.39) (0.01-1.05) (0.87-4.20)
Z-linked loci, all individuals 421 0.40 0.03 0.36 0.16 0.00
(2.32-7.30) (0.21-0.70) (0.01-0.48) (0.21-0.62) (0.03-0.48) (0.00-0.61)
Z-linked loci, all individuals? 4.75 0.46 0.50 0.31 - -
(2.69-8.16) (0.25-0.79) (0.19-1.09) (0.19-0.46)
Mitochondrial, all individuals 4.82 3.17 0.03 2.67 - -
(2.77-8.36) (1.68-5.73) (0.03-47.21) (0.58-3.40)

104=P. cyanea, 0,=P. amoena.

2m,=introgression from P. amoena into P. cyanea, m,=introgression from P. cyanea into P. amoena.

3Parameter estimates when both gene flow parameters were eliminated from analyses.

~700,000-1,370,000 years). Estimated divergence times for the
autosomal and sex-linked datasets were ~1,140,000 (90% highest
posterior density: ~850,000-1,600,000 years) and ~1,290,000
(90% highest posterior density: ~790,000-1,920,000 years) years
ago, respectively. The estimated mitochondrial divergence time
between the species using mean corrected cytochrome b pairwise
divergence data (8.9%) was 4.2 million years (£200,000 years).

Discussion

Quantifying the timing and levels of introgression between di-
verging populations or species that have not yet attained com-
plete reproductive isolation requires information from multiple
unlinked loci. In this study, we explored variation from 20 loci
(one mitochondrial, 13 autosomal, and six z-linked) to investigate
the speciation history of P. amoena and P. cyanea. Using the com-
plete dataset, we were able to reject a strict allopatric speciation
model in favor of a model that requires postdivergence gene flow
between P. amoena and P. cyanea to explain the observed pattern
of genetic variation. Additionally, the data suggest that the major-
ity of introgression between these species has been at autosomal
loci, with little or no introgression at z-linked or mitochondrial
loci.

Recently, two studies made extensive use of simulated
datasets to test the performance of IM and IMa when model as-
sumptions are violated (Becquet and Przeworski 2009; Strasburg
and Reiseberg 2009). Overall, IM (Becquet and Przeworski 2009)
and IMa (Strasburg and Rieseberg 2010) analyses were robust to
assumption violations, but we briefly discuss the impact of three
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violations: population structure, population growth, and gene flow
following secondary contact.

Becquet and Przeworski (2009) found that the presence of
geographic structure in the ancestral population causes IM (they
did not test IMa) to overestimate ancestral population size. In
contrast, Strasburg and Rieseberg (2010) found that the presence
of population structure has little impact on demographic param-
eter estimates. The different findings may be due to the fact that
Strasburg and Rieseberg (2010) investigated the impact of struc-
ture present in the sampled populations, whereas Becquet and
Przeworski (2009) specifically address structure in the ancestral
population. However, in both cases, the presence of population
structure, in either ancestral or contemporary populations, did not
significantly influence estimates of the parameters we were pri-
marily concern with in our study: divergence time and gene flow.

The majority of Tajima’s D values are negative (Table 1),
which suggests recent population growth in both species, a viola-
tion of the IMa model. In their simulations, Strasburg and Riese-
berg (2010) found that exponential and instantaneous population
growth influenced the estimates of current effective population
sizes, but not of any other parameters; similar analyses were not
performed by Becquet and Przeworski (2009). Therefore, the fact
that our datasets violated the constant population size assump-
tion of IMa probably did not change the outcome of any of the
likelihood ratio tests we performed.

Becquet and Przeworski (2009) also found that IM esti-
mates nonzero migration (gene flow) under a divergence model
characterized by a relatively long period of allopatry followed by
a period of secondary contact and gene flow; a similar scenario
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was not investigated by Strasburg and Rieseberg (2010). These
findings are troubling given the increasing number of studies (in-
cluding this one) rejecting the null model of allopatric divergence
(Geraldes et al. 2008; Nadachowska and Babik 2009). It is un-
known if IMa, which we used in this study, suffers from the
same problems as IM. Both methods apply the “Isolation-with-
Migration” model, but use different Markov chain Monte Carlo
methods to estimate the model parameters (Nielsen and Wakeley
2001; Hey and Nielsen 2004, 2007).

The possibility that gene flow following secondary contact
after a long period of allopatry can cause IM to produce nonzero
gene flow estimates, which could lead to the erroneous rejection
of allopatric divergence (Becquet and Przeworski 2009), is ger-
mane to our work. If, after an initial divergence time of 3.2N
generations, the time since secondary contact was at least 0.8N
generations, estimates of gene flow were significantly greater
than zero, with an apparent trend toward greater estimates of gene
flow with increasing time since secondary contact. If we assume
that secondary contact between P. amoena and P. cyanea began
~6500 years ago (see above), then the ratio of time between
the initial divergence and current secondary contact is 0.00625
(6500 years/1,040,000 years), which is considerably less than
the ratio in the simulations (0.25 = 0.8N/3.2N). Although we
cannot be sure without additional simulations, the available ev-
idence suggests that secondary contact between P. amoena and
P. cyanea has influenced the parameter estimates from IM to a
much lesser degree than the patterns of secondary contact sim-
ulated by Becquet and Przeworski (2009). Additionally, in an
attempt to guard against the possible influence of ongoing hy-
bridization on the parameter estimates, we collected the individ-
uals sampled for this study from well outside the current contact
zone (Carling and Brumfield 2008b, 2009), and we were able to
reject the strict allopatric speciation model in all cases in which
all loci were included in the analysis. This was true even when
the analyses involved only the populations (WA and LA) that are
separated by more than 3000 km (Table 2).

Although we were able to reject a strict allopatric speciation
model, it is more difficult to exclude the possibility of repeated
bouts of allopatric isolation and divergence followed by gene
flow during past periods of secondary contact, which may have
tracked climate cycles during the divergence of these species. Un-
fortunately, currently available methods are unable to distinguish
these more historically complex alternate scenarios and we can
only conclude that P. amoena and P. cyanea speciated despite on-
going gene flow during divergence or despite periodic episodes
of allopatric divergence and secondary contact.

Many studies have provided evidence for divergence in the
face of gene flow using coalescent-based methods (Won and Hey
2005; Geraldes et al. 2008; Lee and Edwards 2008; Niemiller
et al. 2008; Strasburg and Rieseberg 2008; Kane et al. 2009;

Nadachowska and Babik 2009; Ross-Ibarro et al. 2009), so many
in fact that some authors have argued that parapatric speciation
may be common (Nosil 2008). However, few of those studies
performed statistical tests to assess the fit of the data to alternate
speciation models. On this basis alone, the evidence for parap-
atric speciation is less than convincing. Additionally, most studies
have not adequately addressed the problems associated with the
presence of geographic structure as discussed above. Lastly, it is
likely that climatic cycles and corresponding habitat changes have
provided the opportunity for repeated periods of allopatric diver-
gence and secondary contact. This phenomenon may explain the
gene flow patterns we found between P. amoena and P. cyanea,
and could play an important role in the evolutionary history of
many closely related taxa. Taken together, we suggest that many
more studies that rigorously test alternate speciation models are
required before we can estimate the relative frequency of sym-
patric, parapatric, and allopatric speciation.

Numerous cline-based studies between closely related
species have supported a prediction of Haldane’s rule (Haldane
1922) that sex-linked loci, and mitochondrial loci in taxa with
heterogametic females (like birds), should introgress less than au-
tosomal loci (Hagen and Scriber 1989; Tucker et al. 1992; Carling
and Brumfield 2008a). These findings have contributed to the
hypothesis that the sex-chromosomes play a disproportionately
large role in reproductive isolation and speciation. Unfortunately,
cline-based analyses are unable to account for the differences
in effective population sizes between mitochondrial, autosomal,
and sex-linked loci, which likely contribute to the differences
in estimates of cline-shape parameters. As demonstrated in this
study, coalescent-based analyses that account for the effective
population size differences can be used to investigate patterns of
differential introgression.

The speciation history of P. amoena and P. cyanea appears
to be marked by introgression of autosomal loci in the absence
of introgression at either mitochondrial or z-linked loci (Fig. 3;
Table 3), as predicted by Haldane’s rule. Outside of the contact
zone, P. amoena and P. cyanea are reciprocally monophyletic
at mitochondrial loci, suggesting no mitochondrial introgression.
Further, we could not reject a strict allopatric divergence model
for the z-linked loci, which is consistent with a lack of postdi-
vergence gene flow via backcrossing female hybrids, as predicted
under Haldane’s rule. These results illustrate how coalescent-
based methods can be used to elucidate the relative contributions
of mitochondrial, autosomal, and sex-linked loci to the overall
patterns of divergence and introgression between closely related
species. To the best of our knowledge, this is the first study to
specifically use a coalescent-based analytical method to test for
differences in gene flow estimates across these different marker
classes, so we presently cannot know whether this is a general
phenomenon among closely related taxa.
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These results have implications for our understanding of the
role of the late Pleistocene on speciation in North American birds,
a topic that has long been debated (Zink and Slowinski 1995;
Klicka and Zink 1997; Avise et al. 1998; Johnson and Cicero
2004; Lovette 2005). Some empirical studies have supported the
hypothesis that many speciation events were initiated before the
Pliocene/Pleistocene boundary (~1,800,000 years ago) and oth-
ers suggest many divergences were initiated much more recently
(many even within the past 250,000 years). Although it is clear
that reliable estimates of divergence time require data from many
independent loci (Edwards and Beerli 2000), all of these past stud-
ies have used divergence times estimated using data from a single
locus. By using a calibrated mutation rate of 5.85 x 10~ substitu-
tions/locus/year, the estimated divergence time (using the all loci,
all individual dataset) between P. amoena and P. cyanea in abso-
lute time is ~1,040,000 years, which is in the middle of the Pleis-
tocene epoch. Divergence time estimates from the autosomal chro-
mosomes and sex chromosomes were similar (~1,140,000 and
~1,290,000 years ago, respectively). Although these divergence
time estimates are dependent on accurate calibration rates, taken
at face value they suggest P. amoena and P. cyanea diverged more
recently than the Pliocene/Pleistocene boundary. The single di-
vergence time estimated here cannot address the general impact of
the Pleistocene glaciations on North American bird speciation, but
it provides a template for how such multilocus comparisons might
be marshaled across many pairs of sister taxa to address this ques-
tion about the general timing of avian speciation in North America.

We found that the divergence time estimated from the mi-
tochondrial data was much older than the divergence time esti-
mated from any of the other datasets (Fig. 2; Table 3), even after
accounting for the 10-fold difference in mutation rates and the
differences in effective population size. Because our mitochon-
drial data consists of a portion of the protein-coding gene ND3
as well as a portion of the noncoding mitochondrial control re-
gion, we did not calculate a mitochondrial divergence time from
our data for comparison. However, we did calculate a mitochon-
drial divergence time using previously published cytochrome b
sequence data for P. cyanea and P. amoena (Klicka et al. 2001)
and a calibrated rate of cytochrome b divergence in birds (2.1 £+
0.1% per million years; Weir and Schluter 2008). Using a mean
corrected pairwise divergence of 8.9%, P. cyanea and P. amoena
diverged 4.2 million years ago (£200,000 years), again, much
older than the divergence time inferred from coalescent analyses
of the multilocus dataset.

A similar pattern was found in a recent multilocus phy-
logeographic study of the red-backed fairy wren, Malurus
melanocephalus (Lee and Edwards 2008). Likewise, whereas
nearly all population-level mitochondrial studies of Neotropical
birds have inferred pre-Pleistocene processes in diversification,
Brumfield et al. (2008) concluded from a multilocus nuclear anal-
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ysis that Pleistocene processes accounted for divergence times in
the Neotropical bird Manacus manacus. In these studies, it is
unclear if the discrepancy is due to errors in the autosomal or
mitochondrial calibration rates, or even error in both calibrations.
Until there are more multilocus investigations of divergence times
it is difficult to know if this is a general issue in birds.

In summary, our results suggest divergence between P.
amoena and P. cyanea was characterized by postdivergence gene
flow. Whether this pattern is a result of parapatric divergence or
repeated periods of allopatric divergence and secondary contact is
unknown. Overall, the general pattern is likely driven by relatively
high levels of gene flow at autosomal loci, as we could not re-
ject a strict allopatric speciation model for the mitochondrial and
sex-linked data. Additionally, our findings illustrate the utility of
coalescent-based methods to elucidate the relative contributions
of gene flow of mitochondrial, autosomal, and sex-linked loci
during divergence and speciation.
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